Carbon Storage Program Structure

CARBON STORAGE PROGRAM

ADVANCED STORAGE R&D

Wellbore Integrity and Mitigation

Storage Complex Efficiency and Security

Monitoring, Verification, Accounting (MVA) and Assessment

STORAGE INFRASTRUCTURE

Regional Carbon Sequestration Partnerships Initiative

Characterization Field Projects (Onshore and Offshore)

Fit-For-Purpose Projects

RISK and INTEGRATION TOOLS

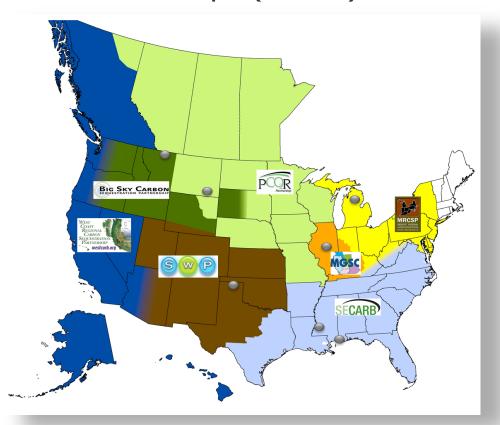
Storage Infrastructure

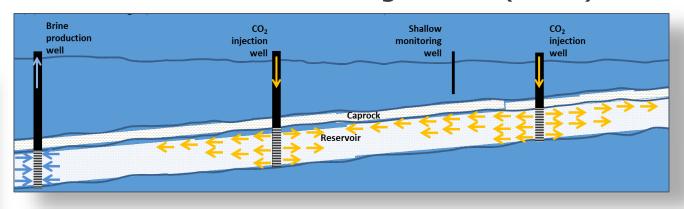
◆ Field projects to validate storage technologies in different storage complexes in various geologic settings and address practical technical and nontechnical issues of storage

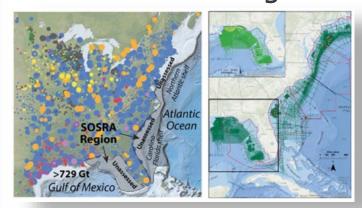
Advanced Storage R&D

◆ Applied R&D to improve wellbore integrity, increase reservoir storage efficiency, improve management of reservoir pressure, confirm permanent storage, and identify and mitigate potential induced seismicity and CO₂ release risks

Risk and Integration Tools


◆ Development and validation of effective quantitative risk assessment tools and integration of knowledge and data


Carbon Storage Program Addressing Larger-scale Challenges

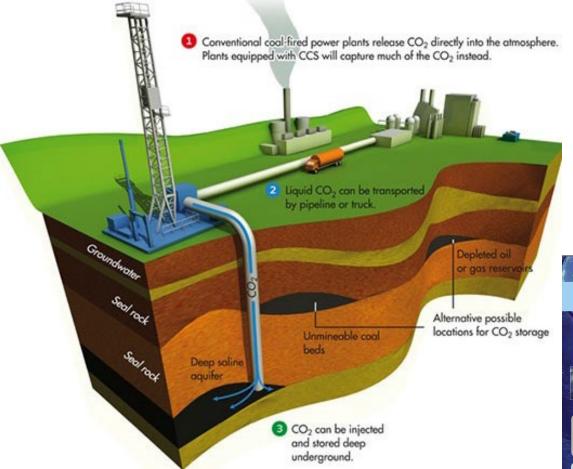

Regional Carbon Sequestration Partnerships (RCSPs)

Brine Extraction Storage Tests (BEST)

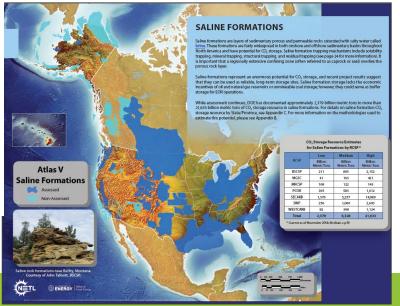
Offshore Storage

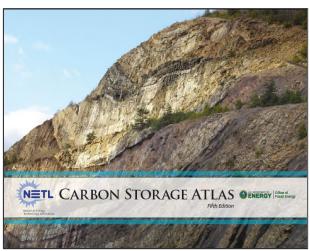
Carbon SAFE

Knowledge Sharing Products Carbon Storage Best Practices Manuals

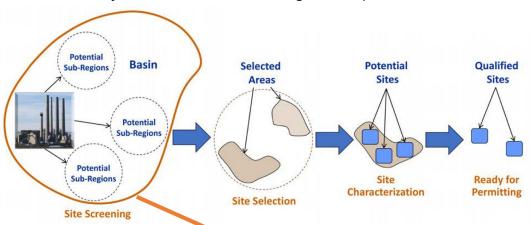

Critical Requirement for Significant Wide Scale Deployment-Capturing Lessons Learned

Best Practices Manual	Version 1 (Phase II)	Version 2 (Phase III)	Final Guidelines (Post Injection)
Monitoring, Verification and Accounting of CO ₂ Stored in Deep Geologic Formations	2009/2012	2017	2020
Public Outreach and Education for Geological Storage of CO ₂ Projects	2009	2017	2020
Site Screening, Site Selection and Site Characterization of CO ₂ in Deep Geologic Formations	2010	2017	2020
Risk Management and Simulation for Geologic Storage of CO ₂	2010	2017	2020
Operating Carbon Storage Projects*	2011	2017	2020




Resource Assessments – How Much CO₂ Can be Stored in the Subsurface?

Prospective CO ₂ Storage Resource for U.S. and parts of Canada				
Regonal Carbon Storage Partnerships	Billion Metric Tons			
Regulial Carbon Storage Partiferships	Low	High		
Oil and Natural Gas Reservoirs	186	232		
Unmineable Coal	54	113		
Saline Onshore	2,379	21,633		
Shale Formations				
Saline Offshore				
Residual Oil Zones				



Methods Based on NETL's Best Practice Manuals

"Project Site Maturation" through the Exploration Phase.

Subsurface Data Analysis

i. Injection Formation

 Oil and Natural Gas Reservoirs, Saline Formations, Unmineable Coal Seams, Shaic, Basalt and Other Volcanic and Mafic Rocks, Salt Caverns

ii. Adequate Depth

- Sufficient depth to maintain injected CO₂ in the supercritical state

iii. Confining Zone

Contain injected CO₂

iv. Prospective Storage Resources

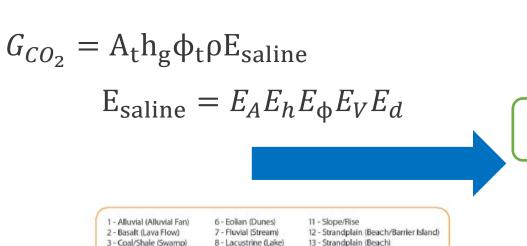
 Sufficient pore volumes and can accept the change in pressure to accommodate planned injection volumes

CO₂ Classification Table

Petroleum Industry	CO ₂ Geological Storage		
Reserves	Storage Capacity		
On Production	Active Injection		
Approved for Development	Approved for Development		
Justified for Development	r Development Justified for Development		
Contingent Resources	Contingent Storage Resources		
Development Pending	Development Pending		
Development Unclarified or On Hold	Development Unclarified or On Hold		
Development Not Viable	Development Not Viable		
Prospective Resources	Prospective Storage Resources		
Prospect	Qualified Site(s)		
Lead	Selected Areas		
Play	Potential Sub-Regions		

Prospective Storage Resources					
Project Sub-Class	Evaluation Process				
Qualified Site(s)	Site Characterization				
Selected Areas	Site Selection				
Potential Sub-Regions	Site Screening				

Social Regional Site Regional Geologic Data

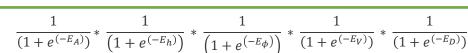

Data

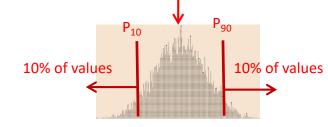
Saline Methodology Equation

14 - Strandplain (Tidal Flat)

15 - Turbidite (Deep-sea Fan)

9 - Reef


10 - Shelf/Platform


4 - Deltaic (Delta)

5 - Deep Marine

U.S. DEPARTMENT OF

CO2-SCREENv2.0 Tool

Saline Formation E. o ncy Factors						
For Geologic and Displacement Terms						
$E_{\text{saline}} = E_{\text{An/At}} E_{\text{hn/hg}} E_{\text{de/} \square \text{dotot}} E_{\text{v}} E_{\text{d}}$						
Lithology P_{10} P_{50} P_{90}						
Clastics	0.51%	2.0%	5.4%			
Dolomite	0.64%	2.2%	5.5%			
Limestone	0.40%	1.5%	4.1%			

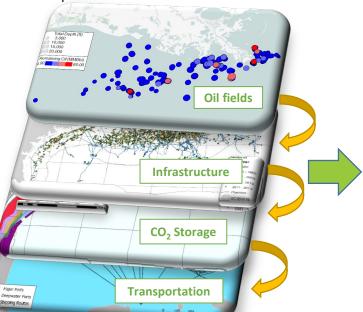
TECHNOLOGY LABORATORY

	Complete Site Screening	Social Dat	ta	Regional Site Data		Regional Geologic Data				COMPONENT		
		Social Context A	Analysis	Re	Regional Proximity Analysis		Subsurface Data Analysis					
	Selected	Land Us Industrial Environmo Histor	Demographic Trends	Pipeline	Existing Resource Developme	Population Centers	Protecte Sensitive	Prospective Storage Resources	Confining Zone	Adequa: Depth	Injection Formation(s)	ELEMENT
ntrol	Greenhouse Gas Control	. I∨era se	raphic ds	ROWs	Existing Resource velopment	ation ers	ed and Areas	ctive Ige rces	ning ne	uate th	ion ion(s)	ENT

carbon dioxide at the national and regional scale
Angela Goodman^{1,4}, Alexandra Hakala⁴, Grant Bromhal⁸, Dawn Deel⁸, Traci Rodosta⁸,
Scrott Failies⁸, Mitchell Small⁸ Duw Aller Wordnelsda Womanov⁴ lim Fazin⁴, Nicolas Huerta-

Prospective CO₂ saline resource estimation methodology: Refinement of existing US-DDE-NETL methods based on data availability
Angela Cooming, 'Sean Sequinion', lonathan 1 Levine

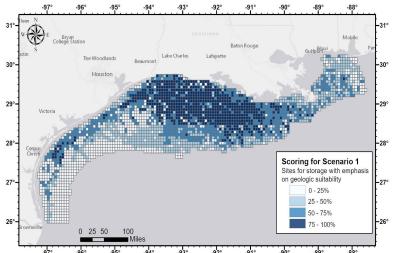
https://edx.netl.doe.gov/dataset/co2-screen-version-2-0

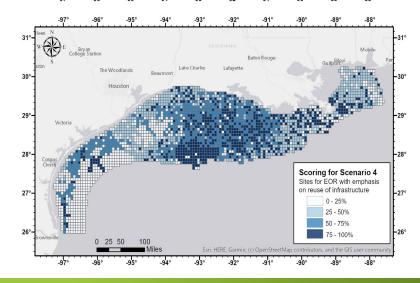

Multi-criteria CCUS Screening Framework of GOM OCS

NATIONAL ENERGY TECHNOLOGY LABORATORY

• Incorporate multiple and disparate CCUS decision making criteria into a systematic, quantitative analysis of OCS in the GOM to identify areas with potentially high suitability for CO₂ storage

 \bullet Sites/regions best suited for offshore CO $_2$ storage would possess criteria and characteristics deemed appropriate for offshore CCUS applications; from both technical and logistical / feasibility-related

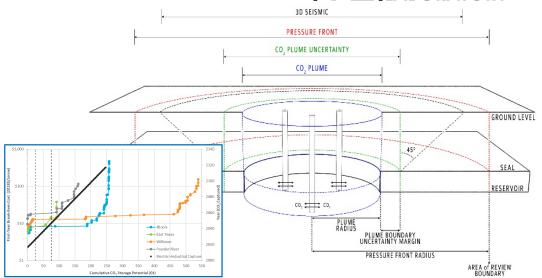

standpoints

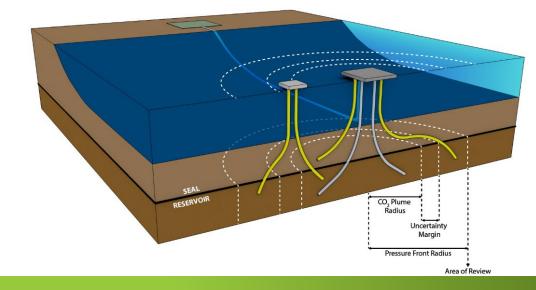


Incorporate criteria into a quantitative analysis to identify areas with potentially high suitability using NETL-developed (G&G team) Cumulative Spatial Impact Layer (CSIL) tool*

Number	Criteria					
i = 1	Reservoir quality without depth ranked by quartile					
i = 2	Sum of injectivity proxy					
i = 3	Sum of oil in reserve (barrels)					
i = 4	Number of active caissons					
i = 5	Number of active well protectors					
i = 6	Number of major active multi-purpose platforms					
i = 7	Distance to closest onshore CO ₂ source > 100,000 tonnes/year					
i = 8	Pipeline right-of-way proxy					
i = 9	Within major shipping route buffer area					
i = 10	Water depth – saline reservoirs					
i = 11	Water depth – oil reservoirs					
i = 12	Above salt domes					
i = 13	Plugged and abandoned wells					
i = 14	Faults					

Qualitative input from experts to weigh the importance of each for 4 separate scenarios


CCUS Cost Models



- FE/NETL CO₂ Storage Cost Model (Publicly Available)
 - Designed to meet Class VI regulations, estimate cost of compliance
 - Can model storage costs for single reservoir or multiple reservoirs
 - Assumes successful operations
 - Contains geologic database representative of geologic section in numerous basins
 - Latest updates: new geologic database, changes to water module, new financial parameters, methodology updated to obtain costs in real dollars, and platform change to Python

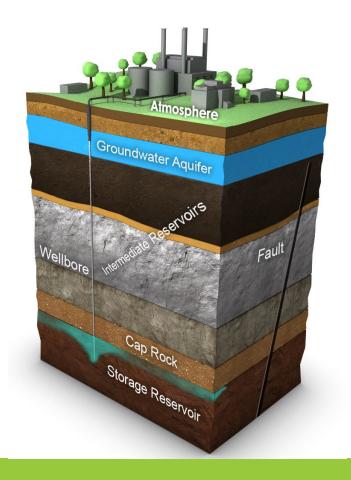
• FE/NETL Offshore CO₂ Saline Storage Cost Model (In Development)

- Extension of onshore CO₂ Storage Cost Model
- Bureau of Ocean Energy Management (BOEM)/Bureau of Safety and Environmental Enforcement (BSEE) (Department of the Interior [DOI]); no Class VI in federal waters
- Needed actions: discussion with offshore working group, relevant cost data and operational steps, and firm conceptual basis

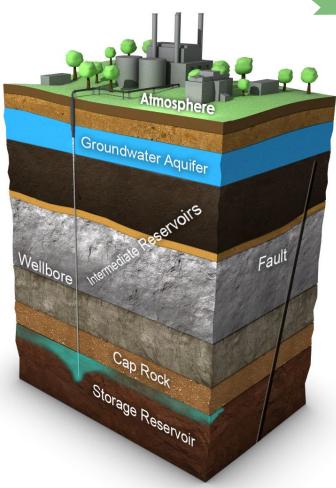
National Risk Assessment Partnership

NRAP leverages DOE's capabilities to quantify storage risks amidst system uncertainties, to help remove barriers to full-scale CO₂ storage deployment.

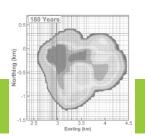
Technical Team



Stakeholder Group

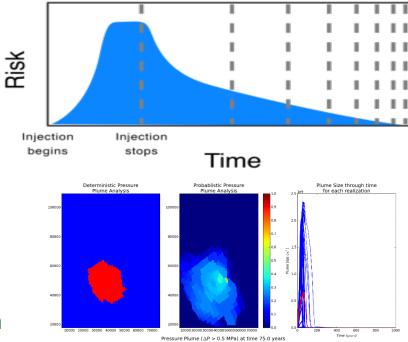


NRAP's approach for rapid prediction of whole-system risk performance


A. Divide system into discrete components

Develop detailed component models that are validated against lab/field data

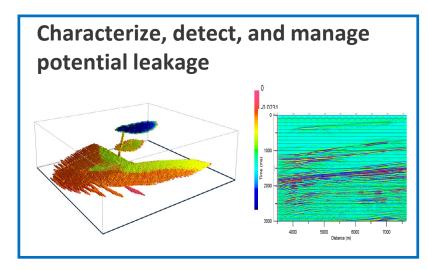
C. Develop reduced-order models (ROMs) that rapidly reproduce component model predictions

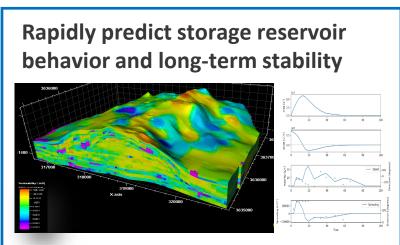


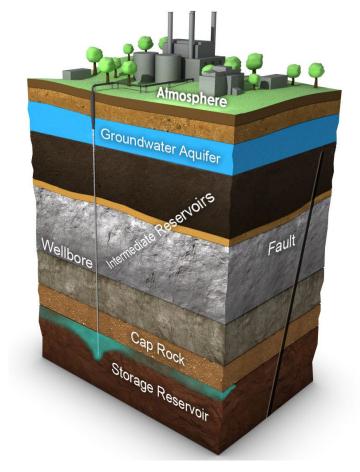
D. Link ROMs via integrated assessment models (IAMs) to predict system performance

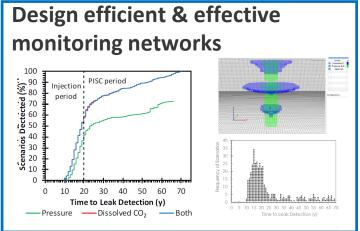
Integrated Risk Assessment

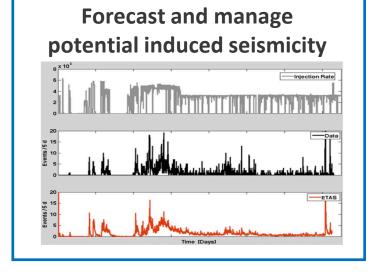
TECHNOLOGY



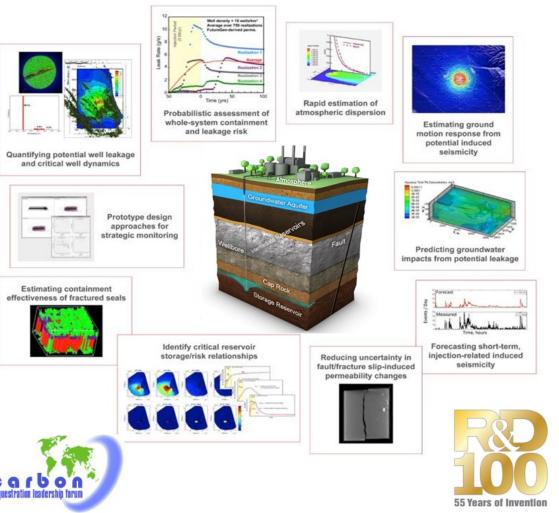

E. Exercise whole system model to explore risk performance


NRAP helps to address key stakeholder questions about long-term GCS risks.





Build stakeholder confidence that GCS risks are small and manageable



NRAP Risk Assessment Tools

Phase I Toolset (November 2016)

Phase II Tools

Leakage Risk/Containment Assurance

 NRAP Open-Source Integrated Assessment Model (NRAP-Open-IAM)

Induced Seismicity Risk

- Short-term Seismic Forecasting Tool (STSF)
- State of Stress Analysis Tool (SoSAT)
- Probabilistic Seismic Risk Assessment Tool (RiskCat)

Monitoring Design and Optimization

- Designs for Risk Evaluation and Management (DREAM 2.0)
- Microseismic monitoring design optimization tool (forthcoming)

NRAP Tools Available at:

www.edx.netl.doe.gov/nrap

